Обозначения аккордов
Шесть чисел аппликатуры указывают лады, на которых
нужно прижимать струны гитары.
Например, аккорд D в цифровой записи обозначается
так:
[x00232]
Графически эту аппликатуру можно представить так:
x 0 0 2 3 2
: : : : : : 1
D : : : О : О 2
(РЕ): : : : О : 3
: : : : : : 4
В обоих случаях шестая (самая толстая) струна
изображена слева.
Цифра '0' означает, что струна не прижимается ни на
каком ладу.
Струны, помеченные символом 'x' не должны звучать -
при игре необходимо не задевать их или приглушать,
слегка прикасаясь пальцами левой руки.
Обратите внимание, что нота "Си" в различных изданиях
обозначается буквами "В" или "H".
На этом сайте в песнях встречаются оба обозначения
(т. к. песни брались из разных источников).
Хотя логичнее было бы следование B после A и перед C,
но лично мне чаще попадалось именно H, поэтому далее
"Си" будет обозначаться как H.
до
C
E A D G B e
C [0 3 2 0 1 0]
C [x 3 2 0 1 0]
C [3 3 2 0 1 0]
C [3 3 5 5 5 3]
C [8 10 10 9 8 8]
C# [x 4 3 1 2 1]
C#5 [x 3 2 1 1 0]
Cb5 [x x 4 5 x 0]
C/A [0 0 2 0 1 3]
C/A [x 0 2 0 1 0]
C/A [x 0 2 2 1 3]
C/A [x 0 5 5 5 8]
C/B [0 3 2 0 0 0]
C/B [x 2 2 0 1 0]
C/B [x 3 5 4 5 3]
C/Bb [x 3 5 3 5 3]
C/D [3 x 0 0 1 0]
C/D [x 3 0 0 1 0]
C/D [x 3 2 0 3 0]
C/D [x 3 2 0 3 3]
C/D [x x 0 0 1 0]
C/D [x x 0 5 5 3]
C/D [x 5 5 5 x 0]
C/F [x 3 3 0 1 0]
C/F [x x 3 0 1 0]
C5 [x 3 5 5 x 3]
C5+ [x 3 2 1 1 0]
C6 [0 0 2 0 1 3]
C6 [x 0 2 0 1 0]
C6 [0 3 2 2 1 3]
C6 [0 3 2 2 1 0]
C6 [x 0 5 5 5 8]
C6 [5 7 5 5 5 5]
C6add9 [x 5 7 5 8 0]
C6add9 [0 3 2 2 3 3]
C7 [x 3 5 3 5 3]
C7 [0 3 2 3 1 3]
C7aug9 [0 3 0 3 5 4]
C7b5 [0 3 2 3 1 2]
C7b9 [0 3 2 3 2 3]
C7sus4 [x 3 5 3 6 3]
C9(b5) [0 3 x 3 3 2]
C9#11 [8 5 8 0 7 0]
C9sus4 [0 3 3 3 3 3]
C11 [8 5 8 0 6 0]
Cadd9 [3 x 0 0 1 0]
Cadd9 [x 3 0 0 1 0]
Cadd9 [x 3 2 0 3 0]
Cadd9 [x 3 2 0 3 3]
Cadd9 [x x 0 0 1 0]
Cadd9 [x x 0 5 5 3]
Cadd9 [x 3 2 0 3 0]
Cadd9 [x 5 5 5 x 0]
Cdim [0 3 4 5 4 2]
Cdim/A [x x 1 2 1 2]
Cdim/Ab [x x 1 1 1 2]
Cdim/Ab [x x 4 5 4 4]
Cdim/D [x 5 4 5 4 2]
Cdim7 [x x 1 2 1 2]
Cm [x 3 5 5 4 3]
Cm [x x 5 5 4 3]
Cm/A [x x 1 2 1 3]
Cm/Bb [x 3 5 3 4 3]
Cm6 [x x 1 2 1 3]
Cm7 [x 3 5 3 4 3]
Cm7b5 [x 3 1 3 1 2]
Cmaj7 [0 3 2 0 0 0]
Cmaj7 [x 2 2 0 1 0]
Cmaj7 [x 3 5 4 5 3]
Cmaj9 [x 3 0 0 0 0]
Cmaj9sus4 [x 3 0 0 0 1]
Cm11 [8 5 5 8 6 6]
Csus [x 3 3 0 1 1]
Csus [x x 3 0 1 1]
Csus2 [x 10 12 12 13 3]
Csus2 [x 5 5 5 x 3]
Csus2 [x 3 0 0 3 3]
Csus2 [x 3 0 0 1 3]
Csus2 [x 3 5 5 3 3]
Csus2/A [x 5 7 5 8 3]
Csus2/A [x x 0 2 1 3]
Csus2/B [3 3 0 0 0 3]
Csus2/B [x 3 0 0 0 3]
Csus2/E [3 x 0 0 1 0]
Csus2/E [x 3 0 0 1 0]
Csus2/E [x 3 2 0 3 0]
Csus2/E [x 3 2 0 3 3]
Csus2/E [x x 0 0 1 0]
Csus2/E [x x 0 5 5 3]
Csus2/E [x 10 12 12 13 0]
Csus2/E [x 5 5 5 x 0]
Csus2/F [3 3 0 0 1 1]
Csus4 [x 3 3 0 1 1]
Csus4 [8 10 10 10 8 8]
Csus4/A [3 x 3 2 1 1]
Csus4/A [x x 3 2 1 3]
Csus4/B [x 3 3 0 0 3]
Csus4/Bb [x 3 5 3 6 3]
Csus4/D [3 3 0 0 1 1]
Csus4/E [x 3 3 0 1 0]
Csus4/E [x x 3 0 1 0]
ре
D
E A D G B e
D [x 5 4 2 3 2]
D [x 9 7 7 x 2]
D [2 0 0 2 3 2]
D [x 0 0 2 3 2]
D [x 0 4 2 3 2]
D [x x 1 3 4 3]
D#5 [x x 0 3 3 2]
D#6 [x 0 1 3 1 3]
D#7 [x 0 1 3 2 3]
D#m7 [x 0 1 3 2 2]
D/B [x 0 4 4 3 2]
D/B [x 2 0 2 0 2]
D/B [x 2 0 2 3 2]
D/B [x 2 4 2 3 2]
D/B [x x 0 2 0 2]
D/C [x 5 7 5 7 2]
D/C [x 0 0 2 1 2]
D/C [x 3 x 2 3 2]
D/C [x 5 7 5 7 5]
D/Db [x x 0 2 2 2]
D/E [0 0 0 2 3 2]
D/E [0 0 4 2 3 0]
D/E [2 x 0 2 3 0]
D/E [x 0 2 2 3 2]
D/E [x x 2 2 3 2]
D/E [x 5 4 2 3 0]
D/E [x 9 7 7 x 0]
D/G [5 x 4 0 3 5]
D/G [3 x 0 2 3 2]
D5 [5 5 7 7 x 5]
D5 [x 0 0 2 3 5]
D6 [x 0 4 4 3 2]
D6 [x 2 0 2 0 2]
D6 [x 2 0 2 3 2]
D6 [x 2 4 2 3 2]
D6 [x x 0 2 0 2]
D6/add9 [0 0 2 4 3 2]
D6/add9 [0 2 0 2 0 2]
D7 [x 5 7 5 7 2]
D7 [x 0 0 2 1 2]
D7 [x 3 x 2 3 2]
D7 [x 5 7 5 7 5]
D7b5 [x x 0 1 1 2]
D7sus4 [x 5 7 5 8 3]
D7sus4 [x x 0 2 1 3]
D9 [0 0 0 2 1 2]
D9 [2 x 0 2 1 0]
D9 [x 5 7 5 7 0]
D9(#5) [0 3 x 3 3 2]
D9sus4 [0 5 5 5 5 5]
Dadd9 [0 0 0 2 3 2]
Dadd9 [0 0 4 2 3 0]
Dadd9 [2 x 0 2 3 0]
Dadd9 [x 0 2 2 3 2]
Dadd9 [x x 2 2 3 2]
Dadd9 [x 5 4 2 3 0]
Dadd9 [x 9 7 7 x 0]
Daug/E [2 x 4 3 3 0]
Db [4 4 6 6 6 4]
Db [x 4 3 1 2 1]
Db [x 4 6 6 6 4]
Db [x x 3 1 2 1]
Db [x x 6 6 6 4]
Db #5 [x 0 3 2 2 1]
Db #5 [x 0 x 2 2 1]
Db b5 [x x 3 0 2 1]
Db/B [x 4 3 4 0 4]
Db/Bb [x 1 3 1 2 1]
Db/C [x 3 3 1 2 1]
Db/C [x 4 6 5 6 4]
Db5 [x 4 6 6 x 4]
Db6 [x 1 3 1 2 1]
Db7 [x 4 3 4 0 4]
Dbaug/D [x x 0 2 2 1]
Dbaug/G [1 0 3 0 2 1]
Dbdim/A [3 x 2 2 2 0]
Dbdim/A [x 0 2 0 2 0]
Dbdim/A [x 0 2 2 2 3]
Dbdim/B [0 2 2 0 2 0]
Dbdim/Bb [x 1 2 0 2 0]
Dbdim/Bb [x x 2 3 2 3]
Dbdim/D [3 x 0 0 2 0]
Dbdim/D [x x 0 0 2 0]
Dbdim7 [x 1 2 0 2 0]
Dbdim7 [x x 2 3 2 3]
Dbm [x 4 6 6 5 4]
Dbm [x x 2 1 2 0]
Dbm [x 4 6 6 x 0]
Dbm/A [x 0 2 1 2 0]
Dbm/B [0 2 2 1 2 0]
Dbm/B [x 4 6 4 5 4]
Dbm7 [0 2 2 1 2 0]
Dbm7 [x 4 6 4 5 4]
Dbm7(b5) [0 2 2 0 2 0]
Dbmaj7 [x 3 3 1 2 1]
Dbmaj7 [x 4 6 5 6 4]
Dbsus2 [x x 6 6 4 4]
Dbsus4/Bb [x x 4 3 2 4]
Ddim/B [x 2 0 1 0 1]
Ddim/B [x x 0 1 0 1]
Ddim/B [x x 3 4 3 4]
Ddim/Bb [x 1 3 1 3 1]
Ddim/Bb [x x 3 3 3 4]
Ddim/C [x x 0 1 1 1]
Ddim7 [x 2 0 1 0 1]
Ddim7 [x x 0 1 0 1]
Ddim7 [x x 3 4 3 4]
Dm [x 0 0 2 3 1]
Dm/B [1 2 3 2 3 1]
Dm/B [x 2 0 2 0 1]
Dm/B [x x 0 2 0 1]
Dm/Bb [1 1 3 2 3 1]
Dm/C [x 5 7 5 6 5]
Dm/C [x x 0 2 1 1]
Dm/C [x x 0 5 6 5]
Dm/Db [x x 0 2 2 1]
Dm/E [x x 7 7 6 0]
Dm6 [1 2 3 2 3 1]
Dm6 [x 2 0 2 0 1]
Dm6 [x x 0 2 0 1]
Dm7 [x x 0 2 1 1]
Dm7 [x 5 7 5 6 5]
Dm7 [x x 0 5 6 5]
Dm7(b5) [x x 0 1 1 1]
Dm7/add11 [3 x 0 2 1 1]
Dmaj7 [x x 0 14 14 14]
Dmaj7 [x x 0 2 2 2]
Dmin/maj7 [x x 0 2 2 1]
Dsus [5 x 0 0 3 5]
Dsus [3 0 0 0 3 3]
Dsus [x 0 0 0 3 3]
Dsus [x x 0 2 3 3]
Dsus2 [5 5 7 7 x 0]
Dsus2 [x 0 0 2 3 0]
Dsus2 [0 0 2 2 3 0]
Dsus2 [x 0 2 2 3 0]
Dsus2 [x x 0 2 3 0]
Dsus2/Ab [4 x 0 2 3 0]
Dsus2/B [0 2 0 2 0 0]
Dsus2/B [x 2 0 2 3 0]
Dsus2/Bb [0 1 x 2 3 0]
Dsus2/C [x x 0 2 1 0]
Dsus2/C [x x 0 5 5 5]
Dsus2/Db [x 0 0 2 2 0]
Dsus2/Db [x x 0 2 2 0]
Dsus2/Db [x x 0 6 5 5]
Dsus2/Db [x x 0 9 10 9]
Dsus2/F [x x 7 7 6 0]
Dsus2/G [x 0 2 0 3 0]
Dsus2/G [x 0 2 0 3 3]
Dsus2/G [x 0 2 2 3 3]
Dsus2/G [5 x 0 0 3 0]
Dsus2/G [x 0 0 0 x 0]
Dsus2/Gb [0 0 0 2 3 2]
Dsus2/Gb [0 0 4 2 3 0]
Dsus2/Gb [2 x 0 2 3 0]
Dsus2/Gb [x 0 2 2 3 2]
Dsus2/Gb [x x 2 2 3 2]
Dsus2/Gb [x 5 4 2 3 0]
Dsus2/Gb [x 9 7 7 x 0]
Dsus4/B [3 0 0 0 0 3]
Dsus4/B [3 2 0 2 0 3]
Dsus4/C [x 5 7 5 8 3]
Dsus4/C [x x 0 2 1 3]
Dsus4/E [x 0 2 0 3 0]
Dsus4/E [5 x 0 0 3 0]
Dsus4/E [x 0 0 0 x 0]
Dsus4/Gb [5 x 4 0 3 5]
Dsus4/Gb [3 x 0 2 3 2]
ми
E
E A D G B e
E [0 2 2 1 0 0]
E [7 7 9 9 9 7]
E [0 2 2 4 5 4]
E [x 7 6 4 5 0]
E#5 [x 3 2 1 1 0]
E/A [x 0 2 1 0 0]
E/D [0 2 0 1 0 0]
E/D [0 2 2 1 3 0]
E/D [x 2 0 1 3 0]
E/D [x x 0 1 0 0]
E/Db [0 2 2 1 2 0]
E/Db [x 4 6 4 5 4]
E/Eb [0 2 1 1 0 0]
E/Eb [0 x 6 4 4 0]
E/Eb [x x 1 1 0 0]
E/Gb [0 2 2 1 0 2]
E/Gb [0 x 4 1 0 0]
E/Gb [2 2 2 1 0 0]
E11/b9 [0 0 3 4 3 4]
E5 [0 2 x x x 0]
E5 [0 0 2 1 0 0]
E5 [x 7 9 9 x 0]
E6 [0 2 2 1 2 0]
E6 [7 7 9 9 9 9]
E6 [x 4 6 4 5 4]
E6sus4 [0 2 2 2 2 0]
E7 [0 2 0 1 0 0]
E7 [0 2 2 1 3 0]
E7 [x 2 0 1 3 0]
E7 [x x 0 1 0 0]
E7sus4 [0 0 0 2 0 0]
E7/add11 [x 0 0 1 0 0]
E7/b9(b5) [0 1 3 1 3 1]
E7b9 [0 2 0 1 0 1]
E7sus4 [0 2 0 2 0 0]
E9 [0 2 0 1 0 2]
E9 [2 2 0 1 0 0]
E9 [0 9 9 7 9 0]
E9sus4 [0 0 0 2 0 2]
Eadd9 [0 2 2 1 0 2]
Eadd9 [0 x 4 1 0 0]
Eadd9 [2 2 2 1 0 0]
Eb [x 1 1 3 4 3]
Eb [x x 1 3 4 3]
Eb [x x 5 3 4 3]
Eb#5 [3 2 1 0 0 3]
Eb#5 [3 x 1 0 0 3]
Eb/C [x 3 5 3 4 3]
Eb/D [x 6 8 7 8 6]
Eb/Db [x 1 1 3 2 3]
Eb/Db [x 6 8 6 8 6]
Eb/Db [x x 1 3 2 3]
Eb/E [x x 5 3 4 0]
Eb5 [x 6 8 8 x 6]
Eb6 [x 3 5 3 4 3]
Eb7 [x 1 1 3 2 3]
Eb7 [x 6 8 6 8 6]
Eb7 [x x 1 3 2 3]
Ebaug/E [3 x 1 0 0 0]
Ebaug/E [x x 1 0 0 0]
Ebdim/B [2 x 1 2 0 2]
Ebdim/B [x 0 1 2 0 2]
Ebdim/B [x 2 1 2 0 2]
Ebdim/B [x 2 4 2 4 2]
Ebdim/C [x x 1 2 1 2]
Ebdim7 [x x 1 2 1 2]
Ebm [x x 4 3 4 2]
Ebm/Db [x x 1 3 2 2]
Ebm7 [x x 1 3 2 2]
Ebmaj7 [x 6 8 7 8 6]
Ebsus2/Ab [x 1 3 1 4 1]
Ebsus4/F [x 1 3 1 4 1]
Edim/C [x 3 5 3 5 3]
Edim/D [3 x 0 3 3 0]
Edim/Db [x 1 2 0 2 0]
Edim/Db [x x 2 3 2 3]
Edim/Eb [x x 5 3 4 0]
Edim7 [x 1 2 0 2 0]
Edim7 [x x 2 3 2 3]
Em [0 2 2 0 0 0]
Em [3 x 2 0 0 0]
Em [x 2 5 x x 0]
Em/A [3 x 2 2 0 0]
Em/A [x 0 2 0 0 0]
Em/A [x 0 5 4 5 0]
Em/C [0 3 2 0 0 0]
Em/C [x 2 2 0 1 0]
Em/C [x 3 5 4 5 3]
Em/D [0 2 0 0 0 0]
Em/D [0 2 0 0 3 0]
Em/D [0 2 2 0 3 0]
Em/D [0 2 2 0 3 3]
Em/D [x x 0 12 12 12]
Em/D [x x 0 9 8 7]
Em/D [x x 2 4 3 3]
Em/D [0 x 0 0 0 0]
Em/D [x 10 12 12 12 0]
Em/Db [0 2 2 0 2 0]
Em/Eb [3 x 1 0 0 0]
Em/Eb [x x 1 0 0 0]
Em/Gb [0 2 2 0 0 2]
Em/Gb [0 2 4 0 0 0]
Em/Gb [0 x 4 0 0 0]
Em/Gb [2 2 2 0 0 0]
Em6 [0 2 2 0 2 0]
Em7 [0 2 0 0 0 0]
Em7 [0 2 0 0 3 0]
Em7 [0 2 2 0 3 0]
Em7 [0 2 2 0 3 3]
Em7 [x x 0 0 0 0]
Em7 [x x 0 12 12 12]
Em7 [x x 0 9 8 7]
Em7 [x x 2 4 3 3]
Em7 [0 x 0 0 0 0]
Em7 [x 10 12 12 12 0]
Em7(b5) [3 x 0 3 3 0]
Em7/add11 [0 0 0 0 0 0]
Em7/add11 [0 0 0 0 0 3]
Em7/add11 [3 x 0 2 0 0]
Em9 [0 2 0 0 0 2]
Em9 [0 2 0 0 3 2]
Em9 [2 2 0 0 0 0]
Emaj7 [0 2 1 1 0 0]
Emaj7 [0 x 6 4 4 0]
Emaj7 [x x 1 1 0 0]
Emaj9 [0 2 1 1 0 2]
Emaj9 [4 x 4 4 4 0]
Emin/maj7 [3 x 1 0 0 0]
Emin/maj7 [x x 1 0 0 0]
Emin/maj9 [0 6 4 0 0 0]
Esus [0 0 2 2 0 0]
Esus [0 0 2 4 0 0]
Esus [0 2 2 2 0 0]
Esus [x 0 2 2 0 0]
Esus [x x 2 2 0 0]
Esus2 [7 9 9 x x 0]
Esus2 [x 2 4 4 x 0]
Esus2/A [x 0 4 4 0 0]
Esus2/A [x 2 4 2 5 2]
Esus2/Ab [0 2 2 1 0 2]
Esus2/Ab [0 x 4 1 0 0]
Esus2/Ab [2 2 2 1 0 0]
Esus2/Db [x 4 4 4 x 0]
Esus2/Eb [x 2 2 4 4 2]
Esus2/Eb [x x 4 4 4 0]
Esus2/G [0 2 2 0 0 2]
Esus2/G [0 2 4 0 0 0]
Esus2/G [0 x 4 0 0 0]
Esus2/G [2 2 2 0 0 0]
Esus4 [0 0 2 2 0 0]
Esus4/Ab [x 0 2 1 0 0]
Esus4/C [0 0 7 5 0 0]
Esus4/C [x 3 2 2 0 0]
Esus4/D [0 2 0 2 0 0]
Esus4/D [x 2 0 2 3 0]
Esus4/Db [0 0 2 4 2 0]
Esus4/Db [x 0 7 6 0 0]
Esus4/Eb [x 2 1 2 0 0]
Esus4/F [0 0 3 2 0 0]
Esus4/G [3 x 2 2 0 0]
Esus4/G [x 0 2 0 0 0]
Esus4/G [x 0 5 4 5 0]
Esus4/Gb [x 0 4 4 0 0]
Esus4/Gb [x 2 4 2 5 2]
фа
F
E A D G B e
F [1 3 3 2 1 1]
F [x 0 3 2 1 0]
F [x 3 3 2 1 1]
F [x x 3 2 1 1]
F #5 [x 0 3 2 2 1]
F# [2 4 4 3 2 2]
F/D [x 5 7 5 6 5]
F/D [x x 0 2 1 1]
F/D [x x 0 5 6 5]
F/E [0 0 3 2 1 0]
F/E [1 3 3 2 1 0]
F/E [1 x 2 2 1 0]
F/E [x x 2 2 1 1]
F/E [x x 3 2 1 0]
F/Eb [x x 1 2 1 1]
F/Eb [x x 3 5 4 5]
F/G [3 x 3 2 1 1]
F/G [x x 3 2 1 3]
F5 [1 3 3 x x 1]
F5 [x 8 10 x x 1]
F6 [x 5 7 5 6 5]
F6 [x x 0 2 1 1]
F6 [x x 0 5 6 5]
F6/add9 [3 x 0 2 1 1]
F7 [x x 1 2 1 1]
F7 [x x 3 5 4 5]
Fadd9 [3 x 3 2 1 1]
Fadd9 [x x 3 2 1 3]
Faug/D [x x 0 2 2 1]
Faug/G [1 0 3 0 2 1]
Fdim/D [x 2 0 1 0 1]
Fdim/D [x x 0 1 0 1]
Fdim/D [x x 3 4 3 4]
Fdim/Db [x 4 3 4 0 4]
Fdim7 [x 2 0 1 0 1]
Fdim7 [x x 0 1 0 1]
Fdim7 [x x 3 4 3 4]
Fm [x 3 3 1 1 1]
Fm [x x 3 1 1 1]
Fm/D [x x 0 1 1 1]
Fm/Db [x 3 3 1 2 1]
Fm/Db [x 4 6 5 6 4]
Fm/Eb [x 8 10 8 9 8]
Fm/Eb [x x 1 1 1 1]
Fm6 [x x 0 1 1 1]
Fm7 [x 8 10 8 9 8]
Fm7 [x x 1 1 1 1]
Fmaj7 [0 0 3 2 1 0]
Fmaj7 [1 3 3 2 1 0]
Fmaj7 [1 x 2 2 1 0]
Fmaj7 [x x 2 2 1 1]
Fmaj7 [x x 3 2 1 0]
Fmaj7/#11 [0 2 3 2 1 0]
Fmaj7/#11 [1 3 3 2 0 0]
Fmaj9 [0 0 3 0 1 3]
Fsus [x x 3 3 1 1]
Fsus2 [x 3 3 0 1 1]
Fsus2 [x x 3 0 1 1]
Fsus2/A [3 x 3 2 1 1]
Fsus2/A [x x 3 2 1 3]
Fsus2/B [x 3 3 0 0 3]
Fsus2/Bb [x 3 5 3 6 3]
Fsus2/D [3 3 0 0 1 1]
Fsus2/E [x 3 3 0 1 0]
Fsus2/E [x x 3 0 1 0]
Fsus4/G [x 3 5 3 6 3]
F#m [2 4 4 2 2 2]
F#m7 [2 4 2 2 2 2]
соль
G
E A D G B e
G [3 2 0 0 0 3]
G [3 5 5 4 3 3]
G [3 x 0 0 0 3]
G [x 5 5 4 3 3]
G/B [3 2 0 0 3 3]
G# [4 6 6 5 4 4]
G#m [4 6 6 4 4 4]
G#5 [3 2 1 0 0 3]
G/A [3 0 0 0 0 3]
G/A [3 2 0 2 0 3]
G/C [3 3 0 0 0 3]
G/C [x 3 0 0 0 3]
G/E [0 2 0 0 0 0]
G/E [0 2 0 0 3 0]
G/E [0 2 2 0 3 0]
G/E [0 2 2 0 3 3]
G/E [x x 0 12 12 12]
G/E [x x 0 9 8 7]
G/E [x x 2 4 3 3]
G/E [0 x 0 0 0 0]
G/E [x 10 12 12 12 0]
G/F [1 x 0 0 0 3]
G/F [3 2 0 0 0 1]
G/F [x x 0 0 0 1]
G/Gb [2 2 0 0 0 3]
G/Gb [2 2 0 0 3 3]
G/Gb [3 2 0 0 0 2]
G/Gb [x x 4 4 3 3]
G5 [3 5 5 x x 3]
G5 [3 x 0 0 3 3]
G6 [0 2 0 0 0 0]
G6 [3 2 0 0 0 0]
G6 [0 2 2 0 3 0]
G6 [0 2 2 0 3 3]
G6 [x x 0 12 12 12]
G6 [x x 0 9 8 7]
G6 [x x 2 4 3 3]
G6 [0 x 0 0 0 0]
G6 [x 10 12 12 12 0]
G6/add9 [0 0 0 0 0 0]
G6/add9 [0 0 0 0 0 3]
G6/add9 [3 x 0 2 0 0]
G7 [1 x 0 0 0 3]
G7 [3 2 0 0 0 1]
G7 [x x 0 0 0 1]
G7/add11 [x 3 0 0 0 1]
G7sus4 [3 3 0 0 1 1]
G9 [x 0 0 0 0 1]
G9 [x 2 3 2 3 3]
Gadd9 [3 0 0 0 0 3]
Gadd9 [3 2 0 2 0 3]
Gaug/E [3 x 1 0 0 0]
Gaug/E [x x 1 0 0 0]
Gb [2 4 4 3 2 2]
Gb [x 4 4 3 2 2]
Gb [x x 4 3 2 2]
Gb #5 [x x 0 3 3 2]
Gb/Ab [x x 4 3 2 4]
Gb/E [2 4 2 3 2 2]
Gb/E [x x 4 3 2 0]
Gb/Eb [x x 1 3 2 2]
Gb/F [x x 3 3 2 2]
Gb6 [x x 1 3 2 2]
Gb7 [2 4 2 3 2 2]
Gb7 [x x 4 3 2 0]
Gb7(#5) [2 x 4 3 3 0]
Gb7/#9 [x 0 4 3 2 0]
Gb7sus4 [x 4 4 4 x 0]
Gbadd9 [x x 4 3 2 4]
Gbaug/E [2 x 4 3 3 0]
Gbdim/D [x 5 7 5 7 2]
Gbdim/D [x 0 0 2 1 2]
Gbdim/D [x 3 x 2 3 2]
Gbdim/D [x 5 7 5 7 5]
Gbdim/E [x 0 2 2 1 2]
Gbdim/E [x x 2 2 1 2]
Gbdim/Eb [x x 1 2 1 2]
Gbdim7 [x x 1 2 1 2]
Gbm [2 4 4 2 2 2]
Gbm [x 4 4 2 2 2]
Gbm [x x 4 2 2 2]
Gbm/D [x x 0 14 14 14]
Gbm/D [x x 0 2 2 2]
Gbm/E [0 0 2 2 2 2]
Gbm/E [0 x 4 2 2 0]
Gbm/E [2 x 2 2 2 0]
Gbm/E [x 0 4 2 2 0]
Gbm/E [x x 2 2 2 2]
Gbm7 [0 0 2 2 2 2]
Gbm7 [0 x 4 2 2 0]
Gbm7 [2 x 2 2 2 0]
Gbm7 [x 0 4 2 2 0]
Gbm7 [x x 2 2 2 2]
Gbm7(b5) [x 0 2 2 1 2]
Gbm7(b5) [x x 2 2 1 2]
Gbm7/b9 [0 0 2 0 2 2]
Gbmaj7 [x x 3 3 2 2]
Gbsus [x 4 4 4 2 2]
Gbsus2/Bb [x x 4 3 2 4]
Gbsus4/E [x 4 4 4 x 0]
Gdim/E [x 1 2 0 2 0]
Gdim/E [x x 2 3 2 3]
Gdim/Eb [x 1 1 3 2 3]
Gdim/Eb [x 6 8 6 8 6]
Gdim/Eb [x x 1 3 2 3]
Gdim7 [x 1 2 0 2 0]
Gdim7 [x x 2 3 2 3]
Gm [3 5 5 3 3 3]
Gm [x x 0 3 3 3]
Gm/E [3 x 0 3 3 0]
Gm/Eb [x 6 8 7 8 6]
Gm/F [3 5 3 3 3 3]
Gm/F [x x 3 3 3 3]
Gm13 [0 0 3 3 3 3]
Gm6 [3 x 0 3 3 0]
Gm7 [3 5 3 3 3 3]
Gm7 [x x 3 3 3 3]
Gm7/add11 [x 3 3 3 3 3]
Gm9 [3 5 3 3 3 5]
Gmaj7 [2 2 0 0 0 3]
Gmaj7 [2 2 0 0 3 3]
Gmaj7 [3 2 0 0 0 2]
Gmaj7 [x x 4 4 3 3]
Gsus [x 10 12 12 13 3]
Gsus [x 3 0 0 3 3]
Gsus [x 3 5 5 3 3]
Gsus [x 5 5 5 3 3]
Gsus2 [5 x 0 0 3 5]
Gadd9(no3)[3 0 0 0 3 3]
Gsus2 [x 0 0 0 3 3]
Gsus2 [x x 0 2 3 3]
Gsus2/B [3 0 0 0 0 3]
Gsus2/B [3 2 0 2 0 3]
Gsus2/C [x 5 7 5 8 3]
Gsus2/C [x x 0 2 1 3]
Gsus2/E [x 0 2 0 3 0]
Gsus2/E [x 0 2 0 3 3]
Gsus2/E [x 0 2 2 3 3]
Gsus2/E [5 0 0 0 3 0]
Gsus2/Gb [5 x 4 0 3 5]
Gsus2/Gb [3 x 0 2 3 2]
Gsus4/A [x 5 7 5 8 3]
Gsus4/A [x x 0 2 1 3]
Gsus4/B [3 3 0 0 0 3]
Gsus4/B [x 3 0 0 0 3]
Gsus4/E [3 x 0 0 1 0]
Gsus4/E [x 3 0 0 1 0]
Gsus4/E [x 3 2 0 3 0]
Gsus4/E [x 3 2 0 3 3]
Gsus4/E [x x 0 0 1 0]
Gsus4/E [x x 0 5 5 3]
Gsus4/E [x 10 12 12 13 0]
Gsus4/E [x 5 5 5 x 0]
Gsus4/F [3 3 0 0 1 1]
ля
A
E A D G B e
A [0 0 2 2 2 0]
A [5 7 7 6 5 5]
A [x 0 2 2 2 0]
A# [x 1 0 3 3 1]
A#5 [x 0 3 2 2 1]
A#5 [x 0 x 2 2 1]
A/Ab [x 0 2 1 2 0]
A/B [0 0 2 4 2 0]
A/B [x 0 7 6 0 0]
A/D [x 0 0 2 2 0]
A/D [x x 0 2 2 0]
A/D [x x 0 6 5 5]
A/D [x x 0 9 10 9]
A/G [3 x 2 2 2 0]
A/G [x 0 2 0 2 0]
A/G [x 0 2 2 2 3]
A/Gb [0 0 2 2 2 2]
A/Gb [0 x 4 2 2 0]
A/Gb [2 x 2 2 2 0]
A/Gb [x 0 4 2 2 0]
A/Gb [x x 2 2 2 2]
A5 [5 7 7 x x 5]
A5 [5 7 7 x x 0]
A6 [0 0 2 2 2 2]
A6 [0 x 4 2 2 0]
A6 [2 x 2 2 2 0]
A6 [x 0 4 2 2 0]
A6 [x x 2 2 2 2]
A6/7 [0 0 2 0 2 2]
A6/7 sus [5 5 4 0 3 0]
A6/7 sus [x 0 2 0 3 2]
A7 [3 x 2 2 2 0]
A7 [x 0 2 0 2 0]
A7 [x 0 2 2 2 3]
A7(#5) [1 0 3 0 2 1]
A7/add11 [x 0 0 0 2 0]
A7sus4 [x 0 2 0 3 0]
A7sus4 [x 0 2 0 3 3]
A7sus4 [x 0 2 2 3 3]
A7sus4 [5 x 0 0 3 0]
A7sus4 [x 0 0 0 x 0]
A9 [0 0 2 4 2 3]
Aadd9 [0 0 2 4 2 0]
Aadd9 [x 0 7 6 0 0]
Aaug/D [x x 0 2 2 1]
Aaug/G [1 0 3 0 2 1]
Ab [4 6 6 5 4 4]
Ab #5 [x 3 2 1 1 0]
Ab/A [x x 1 2 1 4]
Ab/F [x 8 10 8 9 8]
Ab/F [x x 1 1 1 1]
Ab/Gb [x x 1 1 1 2]
Ab/Gb [x x 4 5 4 4]
Ab5 [4 6 6 x x 4]
Ab6 [x 8 10 8 9 8]
Ab6 [x x 1 1 1 1]
Ab7 [x x 1 1 1 2]
Ab7 [x x 4 5 4 4]
Abdim/E [0 2 0 1 0 0]
Abdim/E [0 2 2 1 3 0]
Abdim/E [x 2 0 1 3 0]
Abdim/E [x x 0 1 0 0]
Abdim/Eb [x x 0 4 4 4]
Abdim/F [x 2 0 1 0 1]
Abdim/F [x x 0 1 0 1]
Abdim/F [x x 3 4 3 4]
Abdim7 [x 2 0 1 0 1]
Abdim7 [x x 0 1 0 1]
Abdim7 [x x 3 4 3 4]
Abm [x x 6 4 4 4]
Abm/D [x x 0 4 4 4]
Abm/E [0 2 1 1 0 0]
Abm/E [0 x 6 4 4 0]
Abm/E [x x 1 1 0 0]
Abm/Gb [x x 4 4 4 4]
Abm7 [x x 4 4 4 4]
Absus [x x 6 6 4 4]
Absus2/F [x 1 3 1 4 1]
Adim/Ab [x x 1 2 1 4]
Adim/E [0 3 x 2 4 0]
Adim/F [x x 1 2 1 1]
Adim/F [x x 3 5 4 5]
Adim/G [x x 1 2 1 3]
Adim/Gb [x x 1 2 1 2]
Adim7 [x x 1 2 1 2]
Am [x 0 2 2 1 0]
Am [x 0 7 5 5 5]
Am [x 3 2 2 1 0]
Am/B [0 0 7 5 0 0]
Am/B [x 3 2 2 0 0]
Am/D [x x 0 2 1 0]
Am/D [x x 0 5 5 5]
Am/Eb [0 3 x 2 4 0]
Am/F [0 0 3 2 1 0]
Am/F [1 3 3 2 1 0]
Am/F [1 x 2 2 1 0]
Am/F [x x 2 2 1 1]
Am/F [x x 3 2 1 0]
Am/G [0 0 2 0 1 3]
Am/G [x 0 2 0 1 0]
Am/G [x 0 2 2 1 3]
Am/G [x 0 5 5 5 8]
Am/Gb [x 0 2 2 1 2]
Am/Gb [x x 2 2 1 2]
Am6 [x 0 2 2 1 2]
Am6 [x x 2 2 1 2]
Am7 [0 0 2 0 1 3]
Am7 [x 0 2 0 1 0]
Am7 [x 0 2 2 1 3]
Am7 [x 0 5 5 5 8]
Am+7 [0 0 2 1 1 0]
Am+7 [5 7 6 5 5 5]
Am+7 [x 7 7 9 9 8]
Am7(b5) [x x 1 2 1 3]
Am7/add11 [x 5 7 5 8 0]
Amaj7 [x 0 2 1 2 0]
Amin/maj9 [x 0 6 5 5 7]
Am9 [x 0 2 4 1 3]
Asus [0 0 2 2 3 0]
Asus [x 0 2 2 3 0]
Asus [5 5 7 7 x 0]
Asus [x 0 0 2 3 0]
Asus2 [0 0 2 2 0 0]
Asus2 [0 0 2 4 0 0]
Asus2 [0 2 2 2 0 0]
Asus2 [x 0 2 2 0 0]
Asus2 [x x 2 2 0 0]
Asus2/Ab [x 0 2 1 0 0]
Asus2/C [0 0 7 5 0 0]
Asus2/C [x 3 2 2 0 0]
Asus2/D [0 2 0 2 0 0]
Asus2/D [x 2 0 2 3 0]
Asus2/Db [0 0 2 4 2 0]
Asus2/Db [x 0 7 6 0 0]
Asus2/Eb [x 2 1 2 0 0]
Asus2/F [0 0 3 2 0 0]
Asus2/G [3 x 2 2 0 0]
Asus2/G [x 0 2 0 0 0]
Asus2/G [x 0 5 4 5 0]
Asus2/Gb [x 0 4 4 0 0]
Asus2/Gb [x 2 4 2 5 2]
Asus4/Ab [4 x 0 2 3 0]
Asus4/B [0 2 0 2 0 0]
Asus4/Bb [0 1 x 2 3 0]
Asus4/C [x x 0 2 1 0]
Asus4/C [x x 0 5 5 5]
Asus4/Db [x 0 0 2 2 0]
Asus4/Db [x x 0 2 2 0]
Asus4/Db [x x 0 6 5 5]
Asus4/Db [x x 0 9 10 9]
Asus4/F [x x 7 7 6 0]
Asus4/G [x 0 2 0 3 0]
Asus4/G [x 0 2 0 3 3]
Asus4/G [x 0 2 2 3 3]
Asus4/G [x 0 0 0 x 0]
Asus4/Gb [0 0 0 2 3 2]
Asus4/Gb [0 0 4 2 3 0]
Asus4/Gb [2 x 0 2 3 0]
Asus4/Gb [x 0 2 2 3 2]
Asus4/Gb [x x 2 2 3 2]
Asus4/Gb [x 5 4 2 3 0]
Asus4/Gb [x 9 7 7 x 0]
си
H
E A D G B e
H [2 2 4 4 4 2]
H [7 9 9 8 7 7]
H#5 [3 2 1 0 0 3]
H#5 [3 x 1 0 0 3]
H/A [2 x 1 2 0 2]
H/A [x 0 1 2 0 2]
H/A [x 2 1 2 0 2]
H/A [x 2 4 2 4 2]
H/Ab [x x 4 4 4 4]
H/E [x 2 2 4 4 2]
H/E [x x 4 4 4 0]
H5 [7 9 9 x x 2]
H5 [x 2 4 4 x 2]
H6 [x x 4 4 4 4]
H6 [x 2 1 1 0 2]
H7 [2 x 1 2 0 2]
H7 [x 0 1 2 0 2]
H7 [x 2 1 2 0 2]
H7 [x 2 4 2 4 2]
H7/add11 [0 0 4 4 4 0]
H7/add11 [0 2 1 2 0 2]
H7sus4 [x 0 4 4 0 0]
H7sus4 [x 2 4 2 5 2]
Haug/E [3 x 1 0 0 0]
Haug/E [x x 1 0 0 0]
Hb [1 1 3 3 3 1]
Hb [x 1 3 3 3 1]
Hb [x x 0 3 3 1]
Hb #5 [x x 0 3 3 2]
Hb b5 [x x 0 3 x 0]
Hb/A [1 1 3 2 3 1]
Hb/Ab [x 1 3 1 3 1]
Hb/Ab [x x 3 3 3 4]
Hb/Db [x x 0 6 6 6]
Hb/E [x 1 3 3 3 0]
Hb/G [3 5 3 3 3 3]
Hb/G [x x 3 3 3 3]
Hb5 [6 8 8 x x 6]
Hb5 [x 1 3 3 x 6]
Hb6 [3 5 3 3 3 3]
Hb6 [x x 3 3 3 3]
Hb6/add9 [x 3 3 3 3 3]
Hb7 [x 1 3 1 3 1]
Hb7 [x x 3 3 3 4]
Hb7sus4 [x 1 3 1 4 1]
Hbadd#11 [x 1 3 3 3 0]
Hbaug/E [2 x 4 3 3 0]
Hbdim/C [x 3 x 3 2 0]
Hbdim/D [x x 0 3 2 0]
Hbdim/G [x 1 2 0 2 0]
Hbdim/G [x x 2 3 2 3]
Hbdim/Gb [2 4 2 3 2 2]
Hbdim/Gb [x x 4 3 2 0]
Hbdim7 [x&nb